

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6573–6576

Original synthesis of α -chloroketones in azaheterocyclic series using TDAE approach

Marc Montana, Thierry Terme and Patrice Vanelle*

Laboratoire de Chimie Organique Pharmaceutique LCOP, UMR CNRS 6517, Université de la Méditerranée, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France

> Received 19 June 2006; revised 3 July 2006; accepted 6 July 2006 Available online 31 July 2006

Abstract—We report herein an original and rapid synthesis of new a-chloroketones in azaheterocyclic series based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline and aromatic aldehydes. This reactivity has been generalized to a quinolinic trichloride.

 $© 2006 Elsevier Ltd. All rights reserved.$

The quinoxaline derivatives show very interesting bio-logical properties (antibacterial,^{[1](#page-2-0)} antiviral, anticancer,^{[2](#page-2-0)} antifungal, antihelmintic, antileishmanial, 3 anti-HIV, 3 insecticidal) and their interest in medicinal chemistry is far from coming to an end.^{[4](#page-2-0)} Many drug candidates bearing quinoxaline core structures are in clinical trials in antiviral,^{[1](#page-2-0)} anticancer, antibacterial,^{[2](#page-2-0)} and CNS (central nervous system) therapeutic areas. Among them, the XK469 and the chloroquinoxaline sulfonamide (CQS) were known as antineoplastic quinoxaline topoisomer-ase II inhibitors^{[5–7](#page-2-0)} (see Fig. 1).

a-Haloketones are synthetic intermediates frequently used in the synthesis of organic compounds. Moreover, their preparation generally proceeds via an acid or light initiation for addition of chlorine to ketones.^{[8](#page-2-0)} Other

Figure 1. Structures of XK469 and CQS.

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.030

methods reported for the preparation of α -chloro-ketones use copper (II) chloride,^{[9](#page-3-0)} trichloroisocyanuric acid,^{[10](#page-3-0)} N-chlorosuccinimide,^{[11](#page-3-0)} sulfuryl chloride,^{[12](#page-3-0)} poly-mer-supported chlorine^{[13](#page-3-0)} or p -toluene-sulfonyl chloride in basic media.[14](#page-3-0)

On the other hand, we have shown that from o - and p nitrobenzyl chloride, Tetrakis(DimethylAmino)Ethylene (TDAE)[15](#page-3-0) could generate a nitrobenzyl carbanion which is able to react with various electrophiles as aro-matic aldehydes,^{[16](#page-3-0)} a-keto esters, diethyl ketomalonate and α -keto lactam derivatives.^{[17](#page-3-0)} Recently, we have reported that the reaction of 2-(dibromomethyl)quinoxaline with aromatic aldehydes in the presence of TDAE furnished a mixture of cis/trans isomers of oxiranes (Scheme 1).^{[18](#page-3-0)} The formation of these oxiranes may be explained by nucleophilic addition of α -bromo carbanion, formed by action of TDAE with 2-(dibromomethyl)quinoxaline, on carbonyl group of aldehydes followed by an intramolecular nucleophilic substitution.

In continuation of our program directed toward the study of single electron transfer reactions of bioreductive

Scheme 1. Reaction of 2-(dibromomethyl)quinoxaline with aromatic aldehydes.

Keywords: TDAE; 2-(Trichloromethyl)quinoxaline; a-Chloroketones; Aromatic aldehydes.

^{*} Corresponding author. Tel.: +33 4 91 83 55 80; fax: +33 4 91 79 46 77; e-mail: patrice.vanelle@pharmacie.univ-mrs.fr

alkylating agents^{[19](#page-3-0)} and the preparation of new potentially bioactive compounds as anticancer agents, we report herein an original and efficient synthesis of new azaheterocyclic a-chloroketones based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline 2 and aromatic aldehydes 3a–d. This reactivity has been generalized to other azaheterocyclic trichlorides.

The 2-(trichloromethyl)quinoxaline 2 was prepared by chlorination of 2-methylquinoxaline 1 using a microwave assisted reaction with a $PCl₅/POCl₃$ mixture in 84% yield^{[20](#page-3-0)} (Scheme 2).

The reaction of 2-(trichloromethyl)quinoxaline 2 with 3 equiv of corresponding aromatic aldehydes 3a–d in the presence of TDAE at -20 °C for 1 h, followed by 2 h at room temperature led to the unexpected α -chloroketone 4a–d in moderate to good yields (27–69%) as shown in Scheme 3 and reported in Table 1.^{[21](#page-3-0)}

The poor yield $(27%)$ observed with *p*-cyanobenzaldehyde may be explained, as in benzylic series, 22 by the possibility of cyano group to favor other competitive reactions. However, no new product could be isolated.

This TDAE strategy presents the advantage of forming highly functionalized and original a-chloroketones whose access is not easy by classical synthesis methods.⁹⁻¹⁴ Moreover, only the formation of α -chloroketone was observed, contrary to the cathodic addition of benzylidene trichloride to aldehyde developed by Stei-

Scheme 2. Synthesis of 2-(trichloromethyl)quinoxaline 2.

Scheme 3. Reaction of 2 with aromatic aldehyde 3a–d.

Table 1. Reactions of 2-(trichloromethyl)quinoxaline 2 and aromatic aldehydes 3a–d using TDAEa

Aromatic aldehyde		α-Chloroketone	Yield $(\%)^b$
3a	4-Cl	4a	60
3 _b	4 -CF ₃	4 _b	69
3c	$4-CN$	4c	27
3d	2 -CH ₃	4d	60

^a All the reactions are performed using 3 equiv of aromatic aldehyde 3a–d, 1 equiv of trichloride 2 and 1 equiv of TDAE in anhydrous DMF.

^b % All yields refer to chromatographically isolated pure products and are relative to trichloride 2.

niger^{[23](#page-3-0)} where a mixture of α -chloro- and α -hydroxyketone has been obtained in lower yield. The correct structure of α -chloroketones 4a–d has been determined by a 2D NMR analysis (HMBC sequence).

Pertaining to the original formation of α -chloroketones 4a–d, we could consider the formation of a chloro-oxirane as intermediate according to the mechanism proposed for the formation of oxirane from 2-(dibromomethyl)quinoxaline (Scheme 4).^{[18](#page-3-0)} Chloro-oxiranes, and particularly aromatic chloro-oxiranes, are known for their strong instability (at room temperature or by $SiO₂$ action) leading to α -chloroketones, through an α carbonyl carbocation (pathway A).^{[24](#page-3-0)} However, the NMR analyses of crude products, before purification on silicagel column, showing the NMR characteristics of α -chloroketones (4a–d) confirm that the purification should not be responsible for the rearrangement.

In other respects, the formation of the α -chloro-ketones could be explained with a second mechanism (pathway B) where the chloro-oxirane would be attacked by chloride anion, coming from TDAECl₂, leading to the corresponding a-chloroketones after expulsion of the second chlorine atom.

In order to develop this methodology to aromatic ketone as electrophile, we have investigated the reaction of 2-(trichloromethyl)quinoxaline 2 with 3 equiv of p-nitroacetophenone 5 in the presence of TDAE. According to the same procedure developed with aldehydes, this reaction led to the diastereomeric non-halogenated oxir-anes 6 in 24% yield in the ratio 50:50 [\(Scheme 5\)](#page-2-0).^{[25](#page-3-0)} The 6-like and 6-unlike diastereomers were separated, their configuration was deduced from the known γ -gauche effect, that is, the upfield shift of the 13 C NMR resonances of 1,2-cis substituents. This characterization relies on the ¹³C NMR signal for CH₃ of *like*-stereoisomers (17 ppm) being more shielded than the analogous signal for the unlike-stereoisomers (25 ppm). The formation of these compounds could be explained by the low reactivity of ketones associated to the high reactivity of $-CCl₃$ group in the presence of TDAE, as shown by Carpenter,^{[26](#page-3-0)} leading to the formation of a $-CHCl₂$ group. The non-isolated 2-(dichloromethyl)-quinoxaline reacts with p-nitro-acetophenone to form oxirane 6 as shown with 2-(dibromomethyl)quinoxaline.[18](#page-3-0)

Moreover, this original reactivity has been generalized to other azaheterocyclic compounds. So, we have prepared the 2-(trichloromethyl)-8-nitroquinoline 8 in 98% yield, according to the same chlorination proce-dure.^{[20](#page-3-0)} In the presence of TDAE and 3 equiv of aromatic aldehyde 3a or 3e and in the same experimental conditions, the trichloride 8 has furnished the corresponding α -chloroketones **9a** or **9e**, respectively, in 59 and 37% ([Scheme 6](#page-2-0)).[27](#page-3-0)

In conclusion, we have developed in this work an original and rapid synthesis of new a-chloroketones in azaheterocyclic series based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline and aromatic aldehydes. We have proposed an original

Scheme 4. Formation mechanism of α -chloroketone 4a–d.

Scheme 5. Reaction of 2 with p-nitroacetophenone 3a-d.

Scheme 6. Generalization of the reactivity in quinolinic series.

mechanism via a chloro-oxirane as intermediate for the formation of an α -chloroketone. This reactivity has been generalized to another azaheterocyclic nucleus with success. Moreover, an original reactivity has been observed with p-nitroacetophenone, as electrophile, leading to a diastereomeric mixture of non-halogenated oxiranes. Attempts to further develop the methodology and increase its scope are currently underway in our laboratory.

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique. We express our thanks to Dr. V. Rémusat for ${}^{1}H$ and ${}^{13}C$ NMR spectra recording and Dr. R. Faure for 2D NMR analysis.

References and notes

1. Naylor, M. A.; Stephen, M. A.; Nolan, J.; Sutton, B.; Tocher, J. H.; Fielden, E. M.; Adams, J. E.; Strafford, I. Anticancer Drug Des. 1993, 8, 439–461.

- 2. Harmenberg, J.; Akesson-Johansson, A.; Graslund, A.; Malmfors, T.; Bergman, J.; Wahren, B.; Akerfeldt, S.; Lundblad, L.; Cox, S. Antiviral Res. 1991, 15, 193–204.
- 3. (a) Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P. M.; Franck, X.; Hocquemiller, R.; Figadere, B. Bioorg. Med. Chem. Lett. 2006, 16, 815–820; (b) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.; Figadere, B. Bioorg. Med. Chem. Lett. 2003, 13, 891–894.
- 4. Cheeseman, G. W. H.; Cookson, R. F. In The Chemistry of Heterocyclic Compounds; Weissberger, A., Taylor, E. C., Eds.; John Wiley and Sons: New York, 1979; Vol. 35, p 1.
- 5. (a) Corbett, T. H.; Lorusso, P. M.; Demchick, L.; Simpson, C.; Pugh, S.; White, K.; Kushner, J.; Polin, L.; Meyer, J.; Czarnecki, J.; Heilbrun, L.; Horwitz, J. P.; Gross, J. L.; Behrens, C. H.; Harrison, B. A.; McRipley, R. J.; Trainor, G. Investig. New Drugs 1998, 16, 129–139; (b) Lorusso, P. M.; Parchment, R.; Demchik, L.; Knight, J.; Polin, L.; Dzubow, J.; Behrens, C.; Harrison, B.; Trainor, G.; Corbett, T. H. Investig. New Drugs 1998– 1999, 16, 287–296.
- 6. Shoemaker, R. H. Cancer Treat. Rep. 1986, 70, 9–12.
- 7. Rigas, J. R.; Miller, V. A.; Tong, W. P.; Roistacher, N.; Kris, M. G.; Orazem, J. P.; Young, C. W.; Warrell, R. P., Jr. Cancer Chemother. Pharmacol. 1995, 35, 483–488.
- 8. House, H. O. In Modern Synthetic Reactions; 2nd ed.; Benjamin, W. A., Menlo Park, 1972; p 459.
- 9. Kosower, E. M.; Cole, W. J.; Wu, G.-S.; Cardy, D. E.; Meisters, G. J. Org. Chem. 1963, 28, 630–633.
- 10. Hiegel, G. A.; Peyton, K. B. Synth. Commun. 1985, 15, 385–392.
- 11. Buu-Hoï, N. P.; Demerseman, P. J. Org. Chem. 1953, 18, 649–652.
- 12. (a) Ogata, M.; Matsumoto, H.; Takahashi, K.; Shimizu, S.; Kida, S.; Murabayashi, A.; Shiro, M.; Tawara, K. J. Med. Chem. 1987, 30, 1054–1058; (b) Bak, C.; Praefcke, K. J. Heterocycl. Chem. 1980, 17, 1655–1657; (c) Wyman, D. P.; Kaufman, P. R. J. Org. Chem. 1964, 29, 1956–1960.
- 13. Bongini, A.; Cainelli, G.; Contento, M.; Manescalchi, F. J. Chem. Soc., Chem. Commun. 1980, 1278–1279.
- 14. Brummond, K. M.; Gesenberg, K. D. Tetrahedron Lett. 1999, 40, 2231–2234.
- 15. (a) Takechi, N.; Ait-Mohand, S.; Médebielle, M.; Dolbier, W. R., Jr. Tetrahedron Lett. 2002, 43, 4317–4319; (b) Ait-Mohand, S.; Takechi, N.; Médebielle, M.; Dolbier, W. R., Jr. Org. Lett. 2001, 3, 4271-4273; (c) Médebielle, M.; Keirouz, R.; Okada, E.; Ashida, T. Synlett 2001, 821–823; (d) Dolbier, W. R., Jr.; Médebielle, M.; Ait-Mohand, S. Tetrahedron Lett. 2001, 42, 4811–4814.
- 16. Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. Tetrahedron Lett. 2003, 44, 6433–6435.
- 17. Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. Tetrahedron Lett. 2004, 45, 5121–5124.
- 18. Montana, M.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2005, 46, 8373–8376.
- 19. (a) Terme, T.; Crozet, M. P.; Maldonado, J.; Vanelle, P. In Electron Transfer Reactions in Organic Synthesis, Vanelle, P., Ed.; Research Signpost: Trivandrum, 2002; p 1; (b) Terme, T.; Beziane, A.; Vanelle, P. Lett. Org. Chem. 2005, 2, 367–370.
- 20. (a) Verhaeghe, P.; Rathelot, P.; Gellis, A.; Rault, S.; Vanelle, P. Tetrahedron 62, 8173–8176; (b) Cartwright, D.; Ferguson, J. R.; Giannopoulos, T.; Varvounis, G.; Wakefield, B. J. J. Chem. Soc., Perkin Trans. 1 1995, 2595-2597.
- 21. General procedure for the reaction of 2-(trichloromethyl) quinoxaline 2 and aromatic aldehydes 3a–d, using TDAE. Into a two-necked flask equipped with a silica-gel drying tube and a nitrogen inlet was added, under nitrogen at -20 °C, 10 mL of anhydrous DMF solution of 2-(trichloromethyl)-quinoxaline 2 (0.45 g, 1.5 mmol) and aromatic aldehydes 3a–d (4.5 mmol, 3 equiv). The solution was stirred and maintained at this temperature for 30 min and then was added dropwise (via a syringe) the TDAE (0.3 g, 1.5 mmol). A red color immediately developed with the formation of a white fine precipitate. The solution was vigorously stirred at -20 °C for 1 h and then warmed up to room temperature for 2 h. After this time TLC analysis (dichloromethane) clearly showed that compound 2 was totally consumed. The orange–red turbid solution was filtered (to remove the octamethyl-oxamidinium dichloride) and hydrolyzed with 80 ml of H_2O . The aqueous solution was extracted with chloroform $(3 \times 40 \text{ mL})$ and the combined organic layers were washed with H_2O $(3 \times 40 \text{ mL})$ and dried over MgSO₄. Evaporation of the solvent left an orange oil as crude product. Purification by silica gel chromatography (dichloromethane) and recrystallization from ethanol gave the corresponding α -chloroketone derivatives. New products: Compound 4a; beige solid; mp 110 °C, ¹H NMR (CDCl₃, 200 MHz) δ 7.19 (s, 1H); 7.32 (d, $J = 8.7$ Hz, 2H); 7.58 (d, $J = 8.7$ Hz, 2H); 7.91 (m, 2H); 8.19 (m, 2H); 9.51 (s, 1H). 13C NMR (CDCl₃, 50 MHz) δ 59.0 (CH); 129.1 (2 × CH); 129.6 (CH); 130.3 ($2 \times$ CH); 130.4 (CH); 131.2 (CH); 133.0 (C); 133.8 (C); 135.2 (C); 140.6 (C); 143.8 (CH); 144.1 (C); 144.2 (C); 191.7 (C). Anal. Calcd for $C_{16}H_{10}Cl_2N_2O$: C, 60.59; H, 3.18; N, 8.83. Found: C, 60.48; H, 3.20; N, 8.72.

Compound 4b; orange solid; mp 99 °C , ¹H NMR (CDCl₃, 200 MHz) δ 7.26 (s, 1H); 7.62 (d, $J = 8.3$ Hz, 2H); 7.78 (d, $J = 8.3$ Hz, 2H); 7.93 (m, 2H); 8.19 (m, 2H); 9.53 (s, 1H).
¹³C NMR (CDCl₃, 50 MHz) δ 58.8 (CH); 123.7 (C); 125.9 $(2 \times CH)$; 129.4 $(2 \times CH)$; 129.6 (CH); 130.4 (CH); 131.3 (CH); 131.4 (C); 133.1 (CH); 139.3 (C); 140.6 (C); 143.8 (CH); 144.1 (C); 144.3 (C); 191.6 (C). Anal. Calcd for C17H10ClF3N2O: C, 58.22; H, 2.87; N, 7.99. Found: C, 58.18; H, 2.86; N, 7.87. Compound 4c; beige solid; mp 144 °C, ¹H NMR (CDCl₃, 200 MHz) δ 7.22 (s, 1H); 7.64 $(d, J = 8.5 \text{ Hz}, 2\text{H})$; 7.77 $(d, J = 8.5 \text{ Hz}, 2\text{H})$; 7.93 $(m, 2\text{H})$; 8.19 (m, 2H); 9.50 (s, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 58.5 (CH); 113.0 (C); 118.1 (C); 129.7 (CH); 129.8 $(2 \times CH)$; 130.3 (CH); 131.4 (CH); 132.6 (2 \times CH); 133.2 (CH); 140.4 (C); 140.6 (C); 143.8 (CH); 143.9 (C); 144.3 (C); 191.2 (C). Anal. Calcd for $C_{17}H_{10}C/N_3O$: C, 66.35; H, 3.28; N, 13.65. Found: C, 65.42; H, 3.55; N, 13.47. Compound 4d; green solid; mp 128 °C , ¹H NMR (CDCl₃, 200 MHz) δ 2.76 (s, 3H); 7.18 (m, 3H); 7.38 (m, 2H); 7.86 (m, 2H); 8.12 (m, 2H); 9.53 (s, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 19.5 (CH₃); 58.4 (CH); 126.9 (CH); 128.4 (CH); 129.2 (CH); 129.6 (CH); 130.3 (CH); 131.0 (CH); 131.1 (CH); 132.7 (CH); 134.0 (C); 136.7 (C); 140.7 (C); 143.7 (CH); 144.2 (C); 144.8 (C); 192.7 (C). Anal. Calcd for $C_{17}H_{13}CIN_2O$: C, 68.81; H, 4.42; N, 9.44. Found: C, 68.82; H, 4.42; N, 9.34.

- 22. Amiri-Attou, O.; Terme, T.; Vanelle, P. Molecules 2005, 10, 545–551.
- 23. Steiniger, M.; Schafer, H. J. Bull. Chem. Soc. Jpn. 1988, 61, 125–132.
- 24. (a) Villieras, J.; Feragutti, N. Bull. Soc. Chim. Fr. 1970, 2699–2701; (b) Kirrmann, A.; Nouri-Bimorghi, R. Bull. Soc. Chim. Fr. 1968, 3213–3220.
- 25. Compound 6-like; pink solid, mp 186 °C (ethanol), ${}^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.65 (s, 3H); 4.25 (s, 1H); 7.67 (d, $J = 8.8$ Hz, 2H); 7.83 (m, 2H); 8.11 (m, 2H); 8.27 (d, $J = 8.8$ Hz, 2H); 8.99 (s, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 17.0 (CH₃); 63.1 (C); 66.0 (CH); 123.8 (2 × CH); 126.4 $(2 \times CH)$; 129.0 (CH); 129.5 (CH); 130.3 (CH); 130.7 (CH); 141.7 (C); 142.3 (C); 143.2 (CH); 147.6 (C); 148.2 (C); 149.8 (C). Compound 6-*unlike*; pink solid, mp 157 °C (ethanol), ¹H NMR (CDCl₃, 200 MHz) δ 1.92 (s, 3H); 4.56 (s, 1H); 7.49 (d, $J = 8.8$ Hz, 2H); 7.74 (m, 2H); 7.98 (m, 2H); 8.03
(d, $J = 8.8$ Hz, 2H); 8.39 (s, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 25.0 (CH₃); 64.7 (CH); 65.9 (C); 123.6 (2 × CH); 127.8 (2 × CH); 128.7 (CH); 129.4 (CH); 130.1 (CH); 130.5 (CH); 141.4 (C); 141.9 (C); 142.4 (CH); 144.5 (C); 147.4 (C); 149.8 (C). Anal. Calcd for $C_{17}H_{13}N_3O_3$: C, 66.44; H, 4.26; N, 13.67. Found: C, 65.65; H, 4.23; N, 13.51.
- 26. Carpenter, W. J. Org. Chem. 1965, 30, 3082–3084.
- 27. Compound 9a; beige solid; mp 190 °C (ethanol), ¹H NMR $(CDCl₃, 200 MHz)$ δ 7.19 (s, 1H); 7.30 (d, J = 8.5 Hz, 2H); 7.56 (d, $J = 8.5$ Hz, 2H); 7.76 (m, 1H); 8.13 (m, 2H); 8.29 (d, $J = 8.7$ Hz, 1H); 8.42 (d, $\dot{J} = 8.7$ Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 60.4 (CH); 120.8 (CH); 124.7 (CH); 128.0 (CH); 129.1 (2 \times CH); 130.2 (C); 130.5 (2 \times CH); 131.8 (CH); 134.0 (C); 135.1 (C); 137.9 (CH); 147.5 (C); 148.4 (C); 151.9 (C); 191.5 (C). Anal. Calcd for $C_{17}H_{10}Cl_2N_2O_3$: C, 56.53; H, 2.79; N, 7.76. Found: C, 56.45; H, 2.71; N, 7.52. Compound **9e**; orange solid; mp 151 °C (ethanol), ¹H NMR (CDCl₃, 200 MHz) δ 7.25 (s, 1H); 7.81 (d, $J = 8.9$ Hz, 2H); 8.14 (m, 3H); 8.18 (d, $J = 8.9$ Hz, 2H); 8.30 (d, $J = 8.6$ Hz, 1H); 8.45 (d, $J = 8.6$ Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ 59.8 (CH); 120.8 (CH); 124.1 (2 × CH); 124.9 (CH); 128.3 (CH); 130.1 (2 × CH); 130.3 (C); 131.9 (CH); 138.2 (CH); 142.5 (C); 147.9 (C); 148.1 (C); 148.3 (C); 151.5 (C); 191.0 (C). Anal. Calcd for C₁₇H₁₀ClN₃O₅: C, 54.93; H, 2.71; N, 11.30. Found: C, 54.92; H, 2.84; N, 11.62.