

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6573-6576

## Original synthesis of $\alpha$ -chloroketones in azaheterocyclic series using TDAE approach

Marc Montana, Thierry Terme and Patrice Vanelle\*

Laboratoire de Chimie Organique Pharmaceutique LCOP, UMR CNRS 6517, Université de la Méditerranée, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France

> Received 19 June 2006; revised 3 July 2006; accepted 6 July 2006 Available online 31 July 2006

Abstract—We report herein an original and rapid synthesis of new  $\alpha$ -chloroketones in azaheterocyclic series based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline and aromatic aldehydes. This reactivity has been generalized to a quinolinic trichloride.

© 2006 Elsevier Ltd. All rights reserved.

The quinoxaline derivatives show very interesting biological properties (antibacterial,<sup>1</sup> antiviral, anticancer,<sup>2</sup> antifungal, antihelmintic, antileishmanial,<sup>3</sup> anti-HIV,<sup>3</sup> insecticidal) and their interest in medicinal chemistry is far from coming to an end.<sup>4</sup> Many drug candidates bearing quinoxaline core structures are in clinical trials in antiviral,<sup>1</sup> anticancer, antibacterial,<sup>2</sup> and CNS (central nervous system) therapeutic areas. Among them, the XK469 and the chloroquinoxaline sulfonamide (CQS) were known as antineoplastic quinoxaline topoisomerase II inhibitors<sup>5–7</sup> (see Fig. 1).

 $\alpha$ -Haloketones are synthetic intermediates frequently used in the synthesis of organic compounds. Moreover, their preparation generally proceeds via an acid or light initiation for addition of chlorine to ketones.<sup>8</sup> Other



Figure 1. Structures of XK469 and CQS.

\* Corresponding author. Tel.: +33 4 91 83 55 80; fax: +33 4 91 79 46 77; e-mail: patrice.vanelle@pharmacie.univ-mrs.fr

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.030

methods reported for the preparation of  $\alpha$ -chloroketones use copper (II) chloride,<sup>9</sup> trichloroisocyanuric acid,<sup>10</sup> *N*-chlorosuccinimide,<sup>11</sup> sulfuryl chloride,<sup>12</sup> polymer-supported chlorine<sup>13</sup> or *p*-toluene-sulfonyl chloride in basic media.<sup>14</sup>

On the other hand, we have shown that from *o*- and *p*-nitrobenzyl chloride, Tetrakis(DimethylAmino)Ethylene (TDAE)<sup>15</sup> could generate a nitrobenzyl carbanion which is able to react with various electrophiles as aromatic aldehydes,<sup>16</sup>  $\alpha$ -keto esters, diethyl ketomalonate and  $\alpha$ -keto lactam derivatives.<sup>17</sup> Recently, we have reported that the reaction of 2-(dibromomethyl)quinoxaline with aromatic aldehydes in the presence of TDAE furnished a mixture of cis/trans isomers of oxiranes (Scheme 1).<sup>18</sup> The formation of these oxiranes may be explained by nucleophilic addition of  $\alpha$ -bromo carbanion, formed by action of TDAE with 2-(dibromomethyl)quinoxaline, on carbonyl group of aldehydes followed by an intramolecular nucleophilic substitution.

In continuation of our program directed toward the study of single electron transfer reactions of bioreductive



Scheme 1. Reaction of 2-(dibromomethyl)quinoxaline with aromatic aldehydes.

*Keywords*: TDAE; 2-(Trichloromethyl)quinoxaline; α-Chloroketones; Aromatic aldehydes.

alkylating agents<sup>19</sup> and the preparation of new potentially bioactive compounds as anticancer agents, we report herein an original and efficient synthesis of new azaheterocyclic  $\alpha$ -chloroketones based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline **2** and aromatic aldehydes **3a–d**. This reactivity has been generalized to other azaheterocyclic trichlorides.

The 2-(trichloromethyl)quinoxaline **2** was prepared by chlorination of 2-methylquinoxaline **1** using a microwave assisted reaction with a  $PCl_5/POCl_3$  mixture in 84% yield<sup>20</sup> (Scheme 2).

The reaction of 2-(trichloromethyl)quinoxaline 2 with 3 equiv of corresponding aromatic aldehydes 3a-d in the presence of TDAE at -20 °C for 1 h, followed by 2 h at room temperature led to the unexpected  $\alpha$ -chloroketone 4a-d in moderate to good yields (27–69%) as shown in Scheme 3 and reported in Table 1.<sup>21</sup>

The poor yield (27%) observed with *p*-cyanobenzaldehyde may be explained, as in benzylic series,<sup>22</sup> by the possibility of cyano group to favor other competitive reactions. However, no new product could be isolated.

This TDAE strategy presents the advantage of forming highly functionalized and original  $\alpha$ -chloroketones whose access is not easy by classical synthesis methods.<sup>9–14</sup> Moreover, only the formation of  $\alpha$ -chloroketone was observed, contrary to the cathodic addition of benzylidene trichloride to aldehyde developed by Stei-



Scheme 2. Synthesis of 2-(trichloromethyl)quinoxaline 2.



Scheme 3. Reaction of 2 with aromatic aldehyde 3a-d.

Table 1. Reactions of 2-(trichloromethyl)quinoxaline 2 and aromatic aldehydes 3a-d using TDAE<sup>a</sup>

| Aromatic aldehyde | Х        | α-Chloroketone | Yield (%) <sup>b</sup> |
|-------------------|----------|----------------|------------------------|
| 3a                | 4-Cl     | 4a             | 60                     |
| 3b                | $4-CF_3$ | 4b             | 69                     |
| 3c                | 4-CN     | 4c             | 27                     |
| 3d                | $2-CH_3$ | 4d             | 60                     |

<sup>a</sup> All the reactions are performed using 3 equiv of aromatic aldehyde **3a-d**, 1 equiv of trichloride **2** and 1 equiv of TDAE in anhydrous DMF.

<sup>b</sup>% All yields refer to chromatographically isolated pure products and are relative to trichloride **2**.

niger<sup>23</sup> where a mixture of  $\alpha$ -chloro- and  $\alpha$ -hydroxyketone has been obtained in lower yield. The correct structure of  $\alpha$ -chloroketones **4a**–**d** has been determined by a 2D NMR analysis (HMBC sequence).

Pertaining to the original formation of  $\alpha$ -chloroketones **4a–d**, we could consider the formation of a chloro-oxirane as intermediate according to the mechanism proposed for the formation of oxirane from 2-(dibromomethyl)quinoxaline (Scheme 4).<sup>18</sup> Chloro-oxiranes, and particularly aromatic chloro-oxiranes, are known for their strong instability (at room temperature or by SiO<sub>2</sub> action) leading to  $\alpha$ -chloroketones, through an  $\alpha$ carbonyl carbocation (pathway A).<sup>24</sup> However, the NMR analyses of crude products, before purification on silicagel column, showing the NMR characteristics of  $\alpha$ -chloroketones (**4a–d**) confirm that the purification should not be responsible for the rearrangement.

In other respects, the formation of the  $\alpha$ -chloro-ketones could be explained with a second mechanism (pathway **B**) where the chloro-oxirane would be attacked by chloride anion, coming from TDAECl<sub>2</sub>, leading to the corresponding  $\alpha$ -chloroketones after expulsion of the second chlorine atom.

In order to develop this methodology to aromatic ketone as electrophile, we have investigated the reaction of 2-(trichloromethyl)quinoxaline 2 with 3 equiv of p-nitroacetophenone 5 in the presence of TDAE. According to the same procedure developed with aldehydes, this reaction led to the diastereomeric non-halogenated oxiranes 6 in 24% yield in the ratio 50:50 (Scheme 5).<sup>25</sup> The 6-like and 6-unlike diastereomers were separated, their configuration was deduced from the known  $\gamma$ -gauche effect, that is, the upfield shift of the <sup>13</sup>C NMR resonances of 1,2-cis substituents. This characterization relies on the <sup>13</sup>C NMR signal for CH<sub>3</sub> of *like*-stereoisomers (17 ppm) being more shielded than the analogous signal for the unlike-stereoisomers (25 ppm). The formation of these compounds could be explained by the low reactivity of ketones associated to the high reactivity of -CCl<sub>3</sub> group in the presence of TDAE, as shown by Carpenter,<sup>26</sup> leading to the formation of a -CHCl<sub>2</sub> group. The non-isolated 2-(dichloromethyl)-quinoxaline reacts with *p*-nitro-acetophenone to form oxirane **6** as shown with 2-(dibromomethyl)quinoxaline.<sup>18</sup>

Moreover, this original reactivity has been generalized to other azaheterocyclic compounds. So, we have prepared the 2-(trichloromethyl)-8-nitroquinoline **8** in 98% yield, according to the same chlorination procedure.<sup>20</sup> In the presence of TDAE and 3 equiv of aromatic aldehyde **3a** or **3e** and in the same experimental conditions, the trichloride **8** has furnished the corresponding  $\alpha$ -chloroketones **9a** or **9e**, respectively, in 59 and 37% (Scheme 6).<sup>27</sup>

In conclusion, we have developed in this work an original and rapid synthesis of new  $\alpha$ -chloroketones in azaheterocyclic series based on TDAE strategy from the reaction between 2-(trichloromethyl)quinoxaline and aromatic aldehydes. We have proposed an original



Scheme 4. Formation mechanism of  $\alpha$ -chloroketone 4a-d.



Scheme 5. Reaction of 2 with *p*-nitroacetophenone 3a-d.



Scheme 6. Generalization of the reactivity in quinolinic series.

mechanism via a chloro-oxirane as intermediate for the formation of an  $\alpha$ -chloroketone. This reactivity has been generalized to another azaheterocyclic nucleus with success. Moreover, an original reactivity has been observed with *p*-nitroacetophenone, as electrophile, leading to a diastereomeric mixture of non-halogenated oxiranes. Attempts to further develop the methodology and increase its scope are currently underway in our laboratory.

## Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique. We express our thanks to Dr. V. Rémusat for <sup>1</sup>H and <sup>13</sup>C NMR spectra recording and Dr. R. Faure for 2D NMR analysis.

## **References and notes**

 Naylor, M. A.; Stephen, M. A.; Nolan, J.; Sutton, B.; Tocher, J. H.; Fielden, E. M.; Adams, J. E.; Strafford, I. *Anticancer Drug Des.* **1993**, *8*, 439–461.

- Harmenberg, J.; Akesson-Johansson, A.; Graslund, A.; Malmfors, T.; Bergman, J.; Wahren, B.; Akerfeldt, S.; Lundblad, L.; Cox, S. *Antiviral Res.* 1991, 15, 193–204.
- (a) Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P. M.; Franck, X.; Hocquemiller, R.; Figadere, B. *Bioorg. Med. Chem. Lett.* 2006, *16*, 815–820; (b) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.; Figadere, B. *Bioorg. Med. Chem. Lett.* 2003, *13*, 891–894.
- Cheeseman, G. W. H.; Cookson, R. F. In *The Chemistry* of *Heterocyclic Compounds*; Weissberger, A., Taylor, E. C., Eds.; John Wiley and Sons: New York, 1979; Vol. 35, p 1.
- (a) Corbett, T. H.; Lorusso, P. M.; Demchick, L.; Simpson, C.; Pugh, S.; White, K.; Kushner, J.; Polin, L.; Meyer, J.; Czarnecki, J.; Heilbrun, L.; Horwitz, J. P.; Gross, J. L.; Behrens, C. H.; Harrison, B. A.; McRipley, R. J.; Trainor, G. *Investig. New Drugs* 1998, *16*, 129–139; (b) Lorusso, P. M.; Parchment, R.; Demchik, L.; Knight, J.; Polin, L.; Dzubow, J.; Behrens, C.; Harrison, B.; Trainor, G.; Corbett, T. H. *Investig. New Drugs* 1998– 1999, *16*, 287–296.
- 6. Shoemaker, R. H. Cancer Treat. Rep. 1986, 70, 9-12.
- Rigas, J. R.; Miller, V. A.; Tong, W. P.; Roistacher, N.; Kris, M. G.; Orazem, J. P.; Young, C. W.; Warrell, R. P., Jr. Cancer Chemother. Pharmacol. 1995, 35, 483–488.
- House, H. O. In *Modern Synthetic Reactions*; 2nd ed.; Benjamin, W. A., Menlo Park, 1972; p 459.

- Kosower, E. M.; Cole, W. J.; Wu, G.-S.; Cardy, D. E.; Meisters, G. J. Org. Chem. 1963, 28, 630–633.
- Hiegel, G. A.; Peyton, K. B. Synth. Commun. 1985, 15, 385–392.
- 11. Buu-Hoï, N. P.; Demerseman, P. J. Org. Chem. 1953, 18, 649–652.
- (a) Ogata, M.; Matsumoto, H.; Takahashi, K.; Shimizu, S.; Kida, S.; Murabayashi, A.; Shiro, M.; Tawara, K. J. Med. Chem. 1987, 30, 1054–1058; (b) Bak, C.; Praefcke, K. J. Heterocycl. Chem. 1980, 17, 1655–1657; (c) Wyman, D. P.; Kaufman, P. R. J. Org. Chem. 1964, 29, 1956–1960.
- Bongini, A.; Cainelli, G.; Contento, M.; Manescalchi, F. J. Chem. Soc., Chem. Commun. 1980, 1278–1279.
- 14. Brummond, K. M.; Gesenberg, K. D. Tetrahedron Lett. 1999, 40, 2231–2234.
- (a) Takechi, N.; Ait-Mohand, S.; Médebielle, M.; Dolbier, W. R., Jr. *Tetrahedron Lett.* **2002**, *43*, 4317–4319; (b) Ait-Mohand, S.; Takechi, N.; Médebielle, M.; Dolbier, W. R., Jr. *Org. Lett.* **2001**, *3*, 4271–4273; (c) Médebielle, M.; Keirouz, R.; Okada, E.; Ashida, T. *Synlett* **2001**, 821–823; (d) Dolbier, W. R., Jr.; Médebielle, M.; Ait-Mohand, S. *Tetrahedron Lett.* **2001**, *42*, 4811–4814.
- Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. Tetrahedron Lett. 2003, 44, 6433–6435.
- Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. *Tetrahedron Lett.* 2004, 45, 5121–5124.
- Montana, M.; Terme, T.; Vanelle, P. *Tetrahedron Lett.* 2005, 46, 8373–8376.
- (a) Terme, T.; Crozet, M. P.; Maldonado, J.; Vanelle, P. In Electron Transfer Reactions in Organic Synthesis, Vanelle, P., Ed.; Research Signpost: Trivandrum, 2002; p 1; (b) Terme, T.; Beziane, A.; Vanelle, P. Lett. Org. Chem. 2005, 2, 367–370.
- (a) Verhaeghe, P.; Rathelot, P.; Gellis, A.; Rault, S.; Vanelle, P. *Tetrahedron 62*, 8173–8176; (b) Cartwright, D.; Ferguson, J. R.; Giannopoulos, T.; Varvounis, G.; Wakefield, B. J. J. Chem. Soc., Perkin Trans. 1 1995, 2595–2597.
- 21. General procedure for the reaction of 2-(trichloromethyl)quinoxaline 2 and aromatic aldehydes 3a-d, using TDAE. Into a two-necked flask equipped with a silica-gel drying tube and a nitrogen inlet was added, under nitrogen at -20 °C, 10 mL of anhydrous DMF solution of 2-(trichloromethyl)-quinoxaline 2 (0.45 g, 1.5 mmol) and aromatic aldehydes 3a-d (4.5 mmol, 3 equiv). The solution was stirred and maintained at this temperature for 30 min and then was added dropwise (via a syringe) the TDAE (0.3 g, 1.5 mmol). A red color immediately developed with the formation of a white fine precipitate. The solution was vigorously stirred at -20 °C for 1 h and then warmed up to room temperature for 2 h. After this time TLC analysis (dichloromethane) clearly showed that compound 2 was totally consumed. The orange-red turbid solution was filtered (to remove the octamethyl-oxamidinium dichloride) and hydrolyzed with 80 ml of H<sub>2</sub>O. The aqueous solution was extracted with chloroform  $(3 \times 40 \text{ mL})$  and the combined organic layers were washed with H<sub>2</sub>O  $(3 \times 40 \text{ mL})$  and dried over MgSO<sub>4</sub>. Evaporation of the solvent left an orange oil as crude product. Purification by silica gel chromatography (dichloromethane) and recrystallization from ethanol gave the corresponding a-chloroketone derivatives. New products: Compound 4a; beige solid; mp 110 °C, <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ 7.19 (s, 1H); 7.32 (d, J = 8.7 Hz, 2H); 7.58 (d, J = 8.7 Hz, 2H); 7.91 (m, 2H); 8.19 (m, 2H); 9.51 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 59.0 (CH); 129.1 (2×CH); 129.6 (CH); 130.3 (2×CH); 130.4 (CH); 131.2 (CH); 133.0 (C); 133.8 (C); 135.2 (C); 140.6 (C); 143.8 (CH); 144.1 (C); 144.2 (C); 191.7 (C). Anal. Calcd for C<sub>16</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>O: C, 60.59; H, 3.18; N, 8.83. Found: C, 60.48; H, 3.20; N, 8.72.

Compound **4b**; orange solid; mp 99 °C, <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.26 (s, 1H); 7.62 (d, J = 8.3 Hz, 2H); 7.78 (d, J = 8.3 Hz, 2H); 7.93 (m, 2H); 8.19 (m, 2H); 9.53 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 58.8 (CH); 123.7 (C); 125.9 (2×CH); 129.4 (2×CH); 129.6 (CH); 130.4 (CH); 131.3 (CH); 131.4 (C); 133.1 (CH); 139.3 (C); 140.6 (C); 143.8 (CH); 144.1 (C); 144.3 (C); 191.6 (C). Anal. Calcd for C<sub>17</sub>H<sub>10</sub>ClF<sub>3</sub>N<sub>2</sub>O: C, 58.22; H, 2.87; N, 7.99. Found: C, 58.18; H, 2.86; N, 7.87. Compound **4c**; beige solid; mp 144 °C, <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.22 (s, 1H); 7.64 (d, J = 8.5 Hz, 2H); 7.77 (d, J = 8.5 Hz, 2H); 7.93 (m, 2H); 8.19 (m, 2H); 9.50 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$ 58.5 (CH); 113.0 (C); 118.1 (C); 129.7 (CH); 129.8 (2 × CH); 130.3 (CH); 131.4 (CH); 132.6 (2 × CH); 133.2 (CH); 140.4 (C); 140.6 (C); 143.8 (CH); 143.9 (C); 144.3 (C); 191.2 (C). Anal. Calcd for C<sub>17</sub>H<sub>10</sub>ClN<sub>3</sub>O: C, 66.35; H, 3.28; N, 13.65. Found: C, 65.42; H, 3.55; N, 13.47. Compound **4d**; green solid; mp 128 °C, <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  2.76 (s, 3H); 7.18 (m, 3H); 7.38 (m, 2H); 7.86 (m, 2H); 8.12 (m, 2H); 9.53 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 19.5 (CH<sub>3</sub>); 58.4 (CH); 126.9 (CH); 128.4 (CH); 129.2 (CH); 129.6 (CH); 130.3 (CH); 131.0 (CH); 131.1 (CH); 132.7 (CH); 134.0 (C); 136.7 (C); 140.7 (C); 143.7 (CH); 144.2 (C); 144.8 (C); 192.7 (C). Anal. Calcd for C17H13ClN2O: C, 68.81; H, 4.42; N, 9.44. Found: C, 68.82; H, 4.42; N, 9.34.

- 22. Amiri-Attou, O.; Terme, T.; Vanelle, P. *Molecules* 2005, 10, 545–551.
- Steiniger, M.; Schafer, H. J. Bull. Chem. Soc. Jpn. 1988, 61, 125–132.
- (a) Villieras, J.; Feragutti, N. Bull. Soc. Chim. Fr. 1970, 2699–2701; (b) Kirrmann, A.; Nouri-Bimorghi, R. Bull. Soc. Chim. Fr. 1968, 3213–3220.
- 25. Compound **6**-*like*; pink solid, mp 186 °C (ethanol), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ 1.65 (s, 3H); 4.25 (s, 1H); 7.67 (d, J = 8.8 Hz, 2H); 7.83 (m, 2H); 8.11 (m, 2H); 8.27 (d, J = 8.8 Hz, 2H); 8.99 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 17.0 (CH<sub>3</sub>); 63.1 (C); 66.0 (CH); 123.8 (2 × CH); 126.4 (2 × CH); 129.0 (CH); 129.5 (CH); 130.3 (CH); 130.7 (CH); 141.7 (C); 142.3 (C); 143.2 (CH); 147.6 (C); 148.2 (C); 149.8 (C). Compound **6**-*unlike*; pink solid, mp 157 °C (ethanol), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ 1.92 (s, 3H); 4.56 (s, 1H); 7.49 (d, J = 8.8 Hz, 2H); 7.74 (m, 2H); 7.98 (m, 2H); 8.03 (d, J = 8.8 Hz, 2H); 8.39 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 25.0 (CH<sub>3</sub>); 64.7 (CH); 65.9 (C); 123.6 (2 × CH); 127.8 (2 × CH); 128.7 (CH); 129.4 (CH); 130.1 (CH); 130.5 (CH); 141.4 (C); 141.9 (C); 142.4 (CH); 144.5 (C); 147.4 (C); 149.8 (C). Anal. Calcd for C<sub>17</sub>H<sub>13</sub>N<sub>3</sub>O<sub>3</sub>: C, 66.44; H, 4.26; N, 13.67. Found: C, 65.65; H, 4.23; N, 13.51.
- 26. Carpenter, W. J. Org. Chem. 1965, 30, 3082-3084.
- 27. Compound **9a**; beige solid; mp 190 °C (ethanol), <sup>1</sup>H NMR  $(CDCl_3, 200 \text{ MHz}) \delta 7.19 \text{ (s, 1H)}; 7.30 \text{ (d, } J = 8.5 \text{ Hz}, 2\text{H});$ 7.56 (d, J = 8.5 Hz, 2H); 7.76 (m, 1H); 8.13 (m, 2H); 8.29 (d, J = 8.7 Hz, 1H); 8.42 (d, J = 8.7 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  60.4 (CH); 120.8 (CH); 124.7 (CH); 128.0 (CH); 129.1  $(2 \times CH)$ ; 130.2 (C); 130.5  $(2 \times CH)$ ; 131.8 (CH); 134.0 (C); 135.1 (C); 137.9 (CH); 147.5 (C); 148.4 (C); 151.9 (C); 191.5 (C). Anal. Calcd for C<sub>17</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>: C, 56.53; H, 2.79; N, 7.76. Found: C, 56.45; H, 2.71; N, 7.52. Compound **9e**; orange solid; mp 151 °C (ethanol), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.25 (s, 1H); 7.81 (d, J = 8.9 Hz, 2H); 8.14 (m, 3H); 8.18 (d, J = 8.9 Hz, 2H); 8.30 (d, J = 8.6 Hz, 1H); 8.45 (d, J = 8.6 Hz, 1H); 8.45 (d, J = 8.6 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  59.8 (CH); 120.8 (CH); 124.1 (2×CH); 124.9 (CH); 128.3 (CH); 130.1 (2×CH); 130.3 (C); 131.9 (CH); 138.2 (CH); 142.5 (C); 147.9 (C); 148.1 (C); 148.3 (C); 151.5 (C); 191.0 (C). Anal. Calcd for C<sub>17</sub>H<sub>10</sub>ClN<sub>3</sub>O<sub>5</sub>: C, 54.93; H, 2.71; N, 11.30. Found: C, 54.92; H, 2.84; N, 11.62.